<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Aptos;}
/* Style Definitions */
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#467886;
text-decoration:underline;}
span.EmailStyle19
{mso-style-type:personal-compose;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;
mso-ligatures:none;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style>
</head>
<body lang="EN-US" link="#467886" vlink="#96607D" style="word-wrap:break-word">
<div class="WordSection1">
<p>Moved to IH 156<o:p></o:p></p>
<p><o:p> </o:p></p>
<p>Updated meeting room. <o:p></o:p></p>
<p>CV attached. <o:p></o:p></p>
<p>Title: Pre-training AI Foundation Models for Biomedical Science<o:p></o:p></p>
<p>Abstract: Pre-training models have shown a strong ability to learn generalizable representations by leveraging large amounts of unlabeled or weakly labeled data. However, compared to generic or natural data, biological data are often more complex, heterogeneous,
and available at a much smaller scale, which introduces additional challenges. In this talk, I will present my research on developing self-supervised learning algorithms and foundation models that explicitly address these challenges by leveraging biological
priors such as evolutionary information, geometric structure learning, and effective training of large foundation models under limited biomedical data settings. The talk will cover two main directions: self-supervised learning frameworks for protein representations
that improve a wide range of downstream protein structure property prediction tasks, and foundation models for biomedical image processing.<o:p></o:p></p>
<p>──────────<br>
Menda Eulenfeld is inviting you to a scheduled Zoom meeting.<br>
Join Zoom Meeting<br>
<a href="https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftamucc.zoom.us%2Fj%2F95289988886%3Fpwd%3DYZS2iVXGtIc1Nbb4nAkCy55ISheA7N.1&data=05%7C02%7Ccosc-grad-students-list%40listserv.tamucc.edu%7C1cbe529942be472ce48a08de641fb9d9%7C34cbfaf167a64781a9ca514eb2550b66%7C0%7C0%7C639058284930852521%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=9fGwz%2FW8%2BmfkjhDJjbHbUUCKcPcRP7Nyn9IBixDw1dw%3D&reserved=0" originalsrc="https://tamucc.zoom.us/j/95289988886?pwd=YZS2iVXGtIc1Nbb4nAkCy55ISheA7N.1">https://tamucc.zoom.us/j/95289988886?pwd=YZS2iVXGtIc1Nbb4nAkCy55ISheA7N.1</a><br>
<br>
<br>
Meeting ID: 952 8998 8886<br>
Passcode: 586305<br>
<br>
---<br>
<br>
One tap mobile<br>
+13462487799,,95289988886#,,,,*586305# US (Houston)<br>
+17193594580,,95289988886#,,,,*586305# US<br>
<br>
---<br>
<br>
Join by SIP<br>
• <a href="mailto:95289988886@zoomcrc.com">95289988886@zoomcrc.com</a><br>
Passcode: 586305<br>
<br>
Join instructions<br>
<a href="https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftamucc.zoom.us%2Fmeetings%2F95289988886%2Finvitations%3Fsignature%3DcV3l3eAapHYXDpDwGc7mq2aMotBa9VHiiLiT4sh9ySQ&data=05%7C02%7Ccosc-grad-students-list%40listserv.tamucc.edu%7C1cbe529942be472ce48a08de641fb9d9%7C34cbfaf167a64781a9ca514eb2550b66%7C0%7C0%7C639058284930871837%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=FbClVQUJo%2BVlvpUldD3DoZ5%2FeoS87NdRDoFqha0PieY%3D&reserved=0" originalsrc="https://tamucc.zoom.us/meetings/95289988886/invitations?signature=cV3l3eAapHYXDpDwGc7mq2aMotBa9VHiiLiT4sh9ySQ">https://tamucc.zoom.us/meetings/95289988886/invitations?signature=cV3l3eAapHYXDpDwGc7mq2aMotBa9VHiiLiT4sh9ySQ</a><br>
<br>
<br>
──────────<o:p></o:p></p>
</div>
</body>
</html>