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Abstract

In recent years, AI has advanced rapidly and gradually produced positive impacts in research and
applications across various disciplines. Graph learning is one of the most promising directions
in AI research and application. In this research proposal, I explore how graph learning can be
used to build an automated AI system, with the goal of benefiting both human interests and the
environment. To achieve this goal, I propose three staged objectives. The first objective is graph
neural networks for real-world applications. The second objective is trustworthy and secure AI.
The third objective is to deploy AI to real world.

Currently, I have completed part of the work. For the first objective, as a representative case
study in wastewater monitoring, I have modeled a spatiotemporal graph, demonstrated data us-
ability and predictability, and constructed graph-structured data representations. For the second
objective, I developed HydroNet, a domain-specific ST-GNN that incorporates relevant features,
achieving state-of-the-art results on real datasets from the case study. For the third objective, I ex-
plored partition-and-merge strategies, enabling local retraining of subgraphs instead of the entire
graph. Initial results show reduced costs but some accuracy loss. In this research proposal, I also
present plans for further advancing each of these objectives.
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1 Introduction

1.1 Motivation & Problem Statement

Graph learning represents a transformative approach in artificial intelligence, facilitating the anal-
ysis and prediction of interconnected data structures prevalent in numerous real-world scenarios.
From transportation and energy networks to environmental monitoring and social systems, graphs
naturally capture relationships and dependencies that traditional machine learning methods often
overlook. Despite its potential, deploying graph learning in practical applications encounters sig-
nificant hurdles that must be addressed to realize its full benefits.

The primary challenge lies in data acquisition and preparation. Real-world data for graph-
based models must be not only abundant but also high-quality, featuring spatiotemporal regular-
ities that enable effective representation and learning. This involves careful feature engineering,
data collection methodologies, quality assurance, availability assessment, and the construction of
graph-structured formats. For instance, in a wastewater monitoring system as a case study, sensors
must be strategically placed to capture flow dynamics, but similar considerations apply to traf-
fic sensors in urban mobility or patient interactions in healthcare networks. Without robust data
pipelines, graph models cannot achieve reliable performance, underscoring the need for systematic
approaches to data usability and predictability.

Once suitable data is secured, the next obstacle is model adaptation. Generic graph neural
networks (GNNs), while versatile, frequently underperform in domain-specific contexts because
they fail to incorporate unique characteristics such as physical laws, directional flows, or temporal
periodicity. Designing specialized GNNs that integrate these priors is essential for enhancing
accuracy and interpretability. Continuing with the wastewater example, models must account for
pipe attributes and hydraulic principles, but analogous adaptations are required in other fields,
like incorporating traffic rules in transportation forecasting or biological constraints in molecular
modeling.

Finally, scalability and maintenance pose ongoing challenges. As graphs grow—due to expand-
ing networks or accumulating data—updates to topology or content (e.g., node additions/removals
for privacy compliance) can necessitate costly retraining. In large-scale systems, even minor
changes, such as altering a few nodes, can demand full model recomputation, leading to inefficien-
cies in time, computation, and energy. Privacy concerns further complicate this, as data deletion
requests must be honored without compromising overall system integrity. These issues are univer-
sal across applications, from dynamic urban infrastructures to evolving social graphs, demanding
innovative strategies for efficient, secure, and scalable graph learning.

Addressing these interconnected challenges is vital for transitioning graph learning from the-
oretical advancements to impactful real-world deployments, ultimately benefiting diverse sectors

1



by enabling automated, intelligent systems.

1.2 Research Objectives

Graphs have their unique advantages; they are very suitable for applications in the real world, es-
pecially in scenarios with graph structures and temporal attributes. However, applying Graphs in
real-world modeling and prediction is challenging. This research aims to advance graph learning
for real-world applications, using wastewater monitoring as a representative case study to demon-
strate practical impacts. To achieve this, the following objectives guide the work:

1. Objective 1: Graph Neural Network for Real World Applications.

Motivation: Graph learning can automate monitoring and prediction in interconnected sys-
tems, relieving humans from inefficient tasks in real-world domains like infrastructure net-
works.

Progress: As a case study, I have modeled a wastewater system as a spatiotemporal graph,
demonstrated data usability and predictability, and constructed graph-structured data repre-
sentations.

Next Steps: Build integrated AI systems that automate monitoring, prediction, and report-
ing—combining real-time ST Graph forecasting with large language models for interpretable
outputs across applications.

2. Objective 2: Trustworthy and Secure AI.

Motivation: Generic ST-GNNs often fail to incorporate domain-specific properties, limiting
trustworthiness and security in real-world data scenarios.

Progress: I developed HydroNet, a domain-specific ST-GNN that incorporates relevant fea-
tures, achieving state-of-the-art results on real datasets from wastewater systems as a case.

Next Steps: Extend models with richer priors (e.g., physical attributes) and explore ST-
MPNN architectures for enhanced accuracy, interpretability, and security.

3. Objective 3: Deploy AI to Real World.

Motivation: Scalability, privacy, and efficiency are critical for deploying graph learning in
dynamic real-world systems, where updates or deletions require minimal resources.

Progress: I explored partition-and-merge strategies, enabling local retraining of subgraphs
with reduced costs and minor accuracy loss. Using global compensation (e.g., MLP), accu-
racy improved from 90% to 95%.
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Next Steps: Develop frameworks for near-lossless scalability and privacy-conscious unlearn-
ing through advanced integration, ensuring practical deployment.

1.3 Relevance and Research Necessity

Graph learning holds immense relevance for addressing complex problems in interconnected real-
world systems, where traditional methods fall short in capturing relational dynamics. In domains
like urban infrastructure, energy distribution, healthcare, and environmental management, graphs
provide a natural framework for modeling entities and their interactions, enabling predictions,
optimizations, and anomaly detections that drive efficiency and sustainability. As global chal-
lenges—such as resource scarcity, climate change, and data privacy—intensify, the necessity for
robust graph-based AI becomes evident, offering tools to manage vast, evolving networks with
precision.

However, significant gaps persist in bridging theoretical graph learning with practical deploy-
ment. First, real-world data often suffers from sparsity, noise, or incompleteness, hindering ef-
fective graph construction and learning (aligning with Objective 1). Second, generic models lack
trustworthiness, as they may ignore domain-specific knowledge, leading to unreliable outputs or
vulnerabilities (Objective 2). Third, deployment in dynamic environments requires security fea-
tures like privacy-preserving unlearning and scalability, which current approaches inadequately
address (Objective 3). For example, in wastewater systems as a case, sparse sensing and privacy
regulations exemplify these issues, but they mirror broader challenges in traffic networks or social
platforms.

Recent advances in graph neural networks (GNNs), spatio-temporal extensions (ST-GNNs),
message-passing neural networks (MPNNs), and unlearning techniques lay a strong foundation.
Spectral methods enhance partitioning, transformers improve long-range forecasting, and privacy-
focused frameworks like differential privacy ensure compliance. Despite these, innovations are
needed for sparse observability, physics-informed modeling, and secure scalability to make graph
learning practically viable.

Therefore, this research is essential to close the divide between graph learning theory and real-
world necessities. By tackling data modeling, trustworthy adaptations, and secure deployment, it
will foster AI systems that are not only accurate and efficient but also ethically sound and broadly
applicable across critical domains.
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2 Background and Related Work

2.1 Graph Neural Networks and Spatio-Temporal Extensions

Graphs are fundamental structures for modeling relational data, comprising a set of nodes V and
edges E ⊆ V × V , represented by an adjacency matrix A ∈ RN×N where Auv > 0 indicates a
connection. The Laplacian matrix L = D − A, with degree matrix D, enables spectral analysis
for tasks like clustering. Spatio-temporal graphs extend this by integrating spatial adjacency and
temporal dynamics, defined as G = (V , E , X) where X ∈ RT×N×F captures time-series features
over T timesteps with F dimensions (e.g., traffic speed). Each node v ∈ V has spatial coordinates
sv (e.g., geographic locations) and temporal states xt

v, reflecting dynamics like periodic traffic
patterns or event-driven spikes Yu et al. (2018a); Li et al. (2018). Applications span traffic fore-
casting, epidemiological modeling Kapoor et al. (2020), and healthcare. Recent advances, such as
Graph Convolutional Networks (GCN) Kipf and Welling (2016), Graph Attention Networks (GAT)
Veličković et al. (2018), and Spatio-Temporal Graph Convolutional Networks (ST-GCN) Yu et al.
(2018a), leverage multi-hop propagation and temporal dependencies to predict future states ŷv via
Θ∗ = argminΘL(Θ;D) Wu et al. (2019b), enhancing accuracy but complicating unlearning due
to global couplings.

2.1.1 Modeling Hydraulic Systems with Graphs

Traditional physic-based models, based on hydraulic principles, are computationally demanding
and often unsuitable for real-time applications or large scale simulations. They require extensive
calibration and are limited in handling dynamic or sparse data Zhang (2024). Conversely, GNNs
offer a data driven alternative that is well suited to networked systems utilizing both topological
structure and physical attributes for efficient hydraulic modeling.

In water distribution systems (WDS), GNNs are adopted for reconstructing nodal pressures Ha-
jgató et al. (2021). With an edge-weighting mechanism, this approach exhibits robust nodal pres-
sure recovery performance, even with limited instrumentation. GNNs are also utilized to integrate
water network partitioning and dynamic district-metered areas Rong et al. (2021). Notably, besides
supervised learning, semi-supervised learning is also explored for state estimation in WDS using
graph neural networks Xing and Sela (2022). GNN-based approaches have showcased effective-
ness in optimizing WDS management and responding to emergencies.

Another line of research combines GNN with recurrent processing units to capture spatial and
time-series temporal relations. For example, a Graph Convolutional Recurrent Neural Network
(GCRNN) Zanfei et al. (2022) is proposed for water demand forecasting, outperforming tradi-
tional LSTM models, especially during sensor malfunction conditions. Additionally, Graph Neu-
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ral Rainfall-Runoff Model (GNRRM) Xiang and Demir (2021) is another GNN based model for
high-resolution rainfall-runoff modeling. It enables the use of spatial relations from high-resolution
precipitation data, including flow direction and geographic features.

A specialized ST-GNN, Graph WaveNet Wu et al. (2019a), utilizes dilation to condense time-
series data before passing it to a GCN, enabling the capture of spatial-temporal dependencies. Its
effectiveness has been demonstrated in precise groundwater level forecasting Bai and Tahmasebi
(2023) and predicting streamflow in basin-scale river networks Sun et al. (2022). ST-GNNs have
demonstrated superior performance in hydraulic modeling compared to traditional methods. How-
ever, many of these models fail to leverage critical graph features, such as edge information.

2.1.2 Message Passing Neural Networks

MPNNs have been employed in computational chemistry to predict the molecular properties
Gilmer et al. (2017); St John et al. (2019); Jo et al. (2022). Gilmer et al. (2017) formulated
a common MPNN framework for learning in graph structured data. It consists of two phases:
message passing phase over T time steps and a readout phase to generate the prediction. During
message passing, each node v updates its hidden state ht

v by aggregating the messages from its
neighbors:

mt+1
v =

∑
w∈N (v)

Mt(h
t
v, h

t
w, evw)

ht+1
v = Ut(h

t
v,m

t+1
v )

where Mt is the message function, Ut is the update function and evw denotes the edge features.
After T iterations, a readout function R computes the graph level output:

ŷ = R
(
{hT

v | v ∈ G}
)

Mt, Ut and R are learnable differential functions.
The authors applied this framework to predict quantum chemical properties of molecules in

the QM9 Ramakrishnan et al. (2014) dataset. They explored several novel MPNN variants, such
as different message functions, virtual edges, different readout functions, achieving state-of-the-art
results, suggesting it as a flexible and powerful tool Gilmer et al. (2017). Similarly, a duel branched
MPNN architecture combining standard MPNN and a separate MLP branch for molecular prop-
erty prediction was proposed Jo et al. (2022). The MPNN captured the interatomic interaction
using edge features: distance and angle while MLP modeled the single-atom features to mitigate
over smoothing. Likewise, St John et al. (2019) also implemented MPNN to predict the optoelec-
tronic properties of over 91,000 organic molecules using only 2D molecular structures. The results
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showed that the MPNN, trained on 2D structures with discrete nodes (atoms) and edge (bond)
features such as bond type, conjugation and atom pairs, demonstrated similar accuracy to that of
models that utilized 3D geometric, thereby significantly reducing the computational cost. The edge
features were encoded as learned weight metrics to modulate the message passing process between
the atoms.

These studies highlight importance of edge features, especially in chemistry, where they sig-
nificantly affect the molecular behavior. The result showed that MPNNs are well suited for this
domain as they allow integration of such edge information into the learning process. This concept
can be extended to water and wastewater (sanitary sewer) systems, where the hydraulic behav-
ior between the manholes is influenced by not only node properties but also the characteristics
of connecting pipe. Features like pipe length, slope, material, diameter determine how the flow
propagates in the system. Therefore, by enabling the inclusion of pipe features, MPNNs offer a
powerful and flexible approach to capture the hydraulic dynamics in the sewer system.

2.1.3 Spatio-Temporal Prediction: Adaptive Graphs, Transformers, and MoE

Recent advances since 2019 have shifted pipeline anomaly detection from recurrent models toward
graph- and attention-based architectures. Graph WaveNet Wu et al. (2019b) and its extensions Cui
et al. (2020); Fang et al. (2021) demonstrated the effectiveness of adaptive graph learning for irreg-
ular network topologies, while transformer-based methods Zeng et al. (2021); Wu et al. (2021); Li
et al. (2023) enabled long-range spatiotemporal forecasting under sparse or noisy sensing. More
recently, mixture-of-experts frameworks Lepikhin et al. (2020); Zhai et al. (2023) have further
improved robustness and efficiency by combining specialized predictors. These developments
provide the foundation for systems like AquaSentinel, where reliable and scalable spatiotemporal
prediction is essential for real-time anomaly detection.

2.2 Case Study: Challenges and Existing Methods for Real-World Applica-
tions

2.2.1 Recent Major Incidents and Motivation

Recent major leak incidents in the United States highlight these issues: in Houston, Texas, a 96-
inch water main break prompted a city-wide boil-water advisory and flooded streets and a major
freeway segment cas (2020); in Dallas, Texas, a leak in a treated water pipeline led to an esti-
mated 3.6 million gallons lost, creating swamp-like conditions in a forested area cas (2023); in
Tuscaloosa, Alabama, a 275,000-gallon sewer line leak triggered emergency repairs cas (2025a);
in Atlanta, Georgia, water main issues led to boil advisories in affected neighborhoods, including
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Buckhead, disrupting homes and businesses cas (2024a); in Richmond, Virginia, a winter-storm-
related power outage at the water treatment plant caused widespread service loss and a boil-water
advisory across the region cas (2025b); in Washington, DC, water main breaks shut down a section
of Martin Luther King Jr. Avenue SE, closing roads and disrupting local service cas (2025c); in
Carnelian Bay, California, a sewer spill of tens of thousands of gallons closed beaches, prompted
health advisories, and led to an $850,000 settlement cas (2024b); and in Detroit, Michigan, a major
water main break affected nearly 400 homes, requiring evacuations and emergency sheltering while
causing property and infrastructure disruption cas (2025d). Furthermore, some pipeline anomalies
manifest as background leakage—small, diffuse leaks occurring at joints or minor structural de-
fects, which typically remain hidden, undetected by instruments, and unnoticed at the surface until
they have polluted the environment, wasted water resources, or gradually undermined adjacent
structural integrity. Other incidents are visible leakage, where the leakage becomes apparent to
observers. Crucially, many severe visible leaks have their origins in background leakage that has
progressively worsened. These cases demonstrate how undetected or slowly addressed leaks can
result in widespread service disruptions, environmental contamination, and significant financial
burdens, underscoring the urgent need for more accessible and cost-effective detection solutions.

a. Background Leakage b. Visible Leakage

Figure 1: Critical pipeline infrastructure failures demonstrating the urgent need for automated monitoring
systems. (a) Background Leakage: The silent majority of pipeline failures occur as gradual, undetected
leaks that persist for months or years. These images show typical background leakage scenarios includ-
ing subsurface water accumulation, soil erosion, corroded pipe segments, and contaminated groundwater
infiltration. Such leaks waste millions of gallons of clean water annually and allow untreated sewage to
contaminate soil and groundwater, often going unnoticed until environmental damage becomes irreversible.
(b) Visible Leakage: Catastrophic failures that disrupt urban life, resulting from either sudden mechani-
cal damage (construction accidents, ground movement) or progressive deterioration from undetected back-
ground leaks that escalate to structural collapse.
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2.2.2 Manual and Sensor-Based Detection Methods

Traditional leak detection methods, dominant until the early 2000s, established the baseline under-
standing of pipeline monitoring while revealing critical operational constraints. Visual inspection,
the most primitive approach, could only identify surface manifestations representing 20-30% of
total leaks Hamilton and Charalambous (2013); Puust et al. (2010), requiring $50-100 per mile
(1990s dollars) to survey merely 2-5 miles daily and leaving 70-80% of leaks undetected until
catastrophic failures. Acoustic detection using listening rods improved accuracy to 70-85% on
metallic pipes but degraded to 30-50% on non-metallic ones, with operator dependency demand-
ing 40-80 hours of training and equipment costs of $200-1,500 Hunaidi and Chu (2000); Khulief
et al. (2012); Muggleton and Brennan (2022). Hydrostatic pressure testing achieved 95% accu-
racy for significant leaks but required system isolation and service interruptions, costing $500-
1,500 per mile and limited to non-routine use due to minimum 30 psi requirements ASM (1987);
AWW (1987); GPR Services (2022). These methods’ labor intensity, operator dependency, limited
coverage, and disruptions created an urgent need for automated solutions, as human-dependent
approaches failed to detect most leaks proactively.

The sensor revolution from 2000-2020 addressed scalability through automated monitoring but
introduced challenges in data interpretation and false positives. SCADA systems, costing $20,000-
500,000, achieved 85-95% accuracy for large leaks with real-time responses but generated 15-25%
false positives, overwhelming operators despite network-wide coverage Enersyscorp (2020); High
Tide Technologies (2021); Schneider Electric (2024). Acoustic correlators, at $20,000-39,000,
reached 70-85% accuracy but degraded on PVC pipes and required expert analysis for noise differ-
entiation Gutermann AG (2020); Primayer Ltd (2018); Echologics (2019); Brennan et al. (2007).
Wireless sensor networks ($20,000-50,000 per mile) provided long battery life but overwhelmed
with unanalyzed data Sadeghioon et al. (2014); Abbas et al. (2014); Belachew et al. (2023). Statisti-
cal methods like CUSUM achieved 85-95% accuracy but maintained 5-15% false alarms Begovich
et al. (2011). DTS fiber optics ($50,000-150,000 per unit) offered high resolution but needed 3◦C
differentials and were cost-prohibitive for broad use U.S. Geological Survey (2020); U.S. Envi-
ronmental Protection Agency (2021); Soto et al. (2020). Ultimately, these systems collected data
continuously but lacked intelligent interpretation, creating alert fatigue and necessitating advanced
analytics.

2.3 Unlearning in Graph Neural Networks

This section first establishes the foundational concepts of graphs and spatio-temporal graphs,
which serve as the basis for modeling complex relational and dynamic systems. Building on this
foundation, I provide an overview in Table 2 of machine unlearning approaches, tracing their evolu-
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Generation Technology Accuracy Coverage Key Limitation Cost Range

Manual

Visual Inspection 20-30% Point Surface leaks only $50-100/mile
Acoustic Listening 30-85% Point Operator-dependent $200-1,500/device
Hydrostatic Testing 95% Section Requires shutdown $500-1,500/mile

Summary 40-85% Limited Labor-intensive High operational

Sensor-Based

SCADA Systems 85-95% Network 15-25% false positives $20,000-500,000
Acoustic Correlators 70-85% Section Material-dependent $20,000-39,000
WSN Variable Distributed Data overload $20,000-50,000/mile
Statistical Methods 85-95% Network 5-15% false alarms $25,000-75,000
Fiber Optic DTS High Continuous Temp. differential needed $50,000-150,000/unit

Summary 70-95% Partial Interpretation challenges High capital

Table 1: Evolution of leak detection technologies

tion from general techniques to specialized methods for graphs and, more recently, spatio-temporal
extensions, highlighting the challenges and opportunities in privacy-preserving graph learning.

2.3.1 Machine Unlearning

Bourtoule et al. Bourtoule et al. (2021) introduced SISA (Sharded, Isolated, Sliced, and Ag-
gregated), partitioning training data into disjoint shards and sequential slices with independent
submodels. When deletion requests arrive, only affected slices are retrained from checkpoints,
achieving 4.6× speedups on Purchase-100 with minimal accuracy loss. However, SISA requires
significant storage overhead and careful shard configuration. Ginart et al. Ginart et al. (2019) pro-
posed deletion-efficient algorithms for k-means clustering at NeurIPS 2019. Their Q-k-means and
DC-k-means methods achieve 100× speedups through quantization and divide-conquer strategies,
providing exact deletion guarantees with sublinear amortized runtime.

Guo et al. Guo et al. (2020) developed certified removal for L2-regularized linear models us-
ing Newton updates and randomized perturbation. The method achieves (ϵ, δ)-indistinguishability
guarantees with O(d³) per-deletion complexity, reducing removal times from 15.6s to 0.04s on
MNIST while requiring Hessian inversion. Golatkar et al. Golatkar et al. (2020) introduced weight
scrubbing for deep networks via Fisher Information Matrix perturbations. Their approach min-
imizes KL divergence between scrubbed and retrained model distributions, achieving sub-1 nat
information leakage but requiring careful hyperparameter tuning for curvature estimation.

2.3.2 Graph Unlearning

Chen et al. Chen et al. (2022b) proposed GraphEraser, the first GNN unlearning framework, using
balanced graph partitioning (BLPA/BEKM) with learned aggregation. Upon deletion, only affected
shards are retrained, achieving 2.06×–35.94× speedups over full retraining with comparable F1

9



Table 2: Summary of representative machine learning and graph unlearning methods. ”Complete Forget-
ting” indicates formal deletion guarantees.

Method / Paper Unlearning Mechanism Target of Unlearning Complete Forgetting Target Task

General Machine Unlearning
SISA Bourtoule et al. (2021) Sharded retraining Data Sample Yes Classification
Making AI Forget You Ginart et al. (2019) Memoised incremental $k$-means Data Sample Yes Clustering
Certified Removal Guo et al. (2020) Newton update + DP extractor Data Sample Yes Classification
ESNet Golatkar et al. (2020) Fisher-info weight scrub Data Subset No Classification

Graph Unlearning
GraphEraser Chen et al. (2022b) Partition + aggregation Node/Edge No Classification
GUIDE Wang et al. (2023) Repair-then-aggregate Node/Edge No Classification
GNNDelete Cheng et al. (2023) Layer-wise erase op. Node/Edge/Feat. No Classification
PROJECTOR Cong and Mahdavi (2023) Orthogonal projection Node Yes Classification

Spatiotemporal Graph Unlearning
STEPS Guo et al. (2025b) Partition + aggregation Node (sensor) Yes Forecast
Graph Revoke Zhang et al. (2025) Gradient transform Dynamic edge No Pred & Recom
IsleNet (Ours) Island decomposition + VIB Node/Edge Yes Forecast

scores, though without formal deletion guarantees. Wang et al. Wang et al. (2023) introduced
GUIDE for dynamic GNN unlearning, employing guided partitioning with fairness constraints
and similarity-based aggregation. GUIDE achieves 3× faster partitioning and superior inductive
performance but relies on heuristic components without rigorous privacy proofs.

Cheng et al. Cheng et al. (2023) developed GNNDelete, a model-agnostic approach using
layer-wise deletion operators that learn small deletion matrices while freezing original weights.
The method handles edge, node, and feature deletion with 12.3× speedup and theoretical stability
bounds, though lacking formal deletion certificates. Cong and Mahdavi Cong and Mahdavi (2023)
introduced PROJECTOR for linear GNNs, using orthogonal projection onto remaining feature
subspaces. This provides perfect deletion guarantees with O(maxm³, md²) complexity, reducing
unlearning time to under 0.1s, but is limited to linear architectures.

2.3.3 Spatiotemporal Graph Unlearning

Guo et al. Guo et al. (2025b) developed STEPS for spatiotemporal GNN forecasting, using spec-
tral partitioning and weighted aggregation. STEPS handles up to 15% node removal in urban
systems with order-of-magnitude speedups, though lacking formal deletion proofs and requiring
preset partition scales. Zhang et al. Zhang et al. (2025) introduced Graph Revoke for dynamic
graph unlearning in continuous-time networks using gradient transformation via ML Mixer. The
method achieves 7.23× speedups on link prediction tasks with negligible accuracy drops, but lacks
theoretical deletion guarantees and may face scalability bottlenecks.

These promising studies reveal the importance, challenges, and prospects of machine unlearn-
ing and graph unlearning. It is particularly evident that spatiotemporal graph unlearning research
is just in its infancy. To address this gap, I propose IsleNet: Island Network for Unlearning Spa-
tiotemporal Graphs.
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3 Graph Neural Networks for Real-World Applications: Mod-
eling and System Development

3.1 Introduction

Urban underground water and wastewater pipelines are critical infrastructure for city operations,
enabling the efficient transport of water and wastewater. However, these systems are costly to con-
struct and maintain, and as they age, they become increasingly vulnerable to fractures and faulty
connections. Such anomalies—including leaks, infiltrations, and blockages—result in substantial
water loss, environmental contamination, and rising repair costs. Given these challenges, accurate
detection of faulty connections and fractures is essential. Traditional approaches, however, are
limited: manual inspections often suffer from delays and incomplete coverage, while dense sen-
sor deployments remain economically prohibitive due to high installation and maintenance costs.
Other assessment techniques, such as closed-circuit television (CCTV) surveys and smoke test-
ing Beheshti and Sægrov (2019), offer more comprehensive diagnostics but are both costly and
labor-intensive

In recent years, AI has advanced rapidly, and developing dedicated AI techniques for urban
applications offers a promising solution. To address this challenge, I present an AI-enhanced
monitoring system that deploys sparse sensors at manholes to collect real-world water (RWW)
data such as inflow and depth, augmented by hydraulic simulations for full network coverage. This
RWW data then feeds into HydroNet, my spatiotemporal graph neural network that represents
the water and wastewater network as a directed graph—nodes as manholes, edges as pipes with
physical attributes (diameter, slope, material). By incorporating these pipeline properties directly
into message passing, HydroNet learns normal hydraulic patterns and flags anomalies through
deviation detection. I deployed this integrated AI and remote-sensor framework on a campus
network and collected over a year of real-world data for modeling and evaluation. Experimental
results demonstrate that the system effectively captures spatiotemporal hydraulic data and enables
HydroNet to achieve high precision, with the best MAE of 0.0085 ft for depth and 0.0038 cfs for
flow. These results confirm that the system successfully provides data with strong predictive utility,
supporting asynchronous forecasting and anomaly detection in pipeline flow. This work represents
a successful practice of AI for urban underground water monitoring.

3.2 Method

My system operates in three interconnected stages: first, sparse remote sensors collect real-time
flow and depth data from key network locations, augmented by hydraulic simulations for full cov-
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(a) A graph model. (b) An example of GNN layers and how 

message aggregated through edges.
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92090090

Figure 2: Graph representation of the campus sewer network. Nodes represent manholes with flow and
depth measurements, while directed edges represent pipes with physical attributes. The conceptual design
of Graph Neural Networks for water flow distribution. I propose a sewer system graph G = (V,E), where
node set V are the manholes, and edge set E are a set of directed edges representing messages passing in
sewer mains. In this example, I show the two layers of the propagation process of vertex v1. Assuming an
anomaly was found on v2, after training all the vertices, I are able to predict the cascading impacts of v2
following the downstream passes.

erage; second, this data is fused with pipeline attributes in a graph-structured format for spatio-
temporal modeling via HydroNet; and third, the model learns to accurately predict normal hy-
draulic patterns. This end-to-end pipeline balances cost-efficiency with accuracy, leveraging phys-
ical domain knowledge to enhance AI predictions. I detail each component below.

a. Sensor Deployment Schematic c. Sensor Installed on Manholes d. Complete sensor assemblyb. Schematic of Pipe Hydraulic
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Figure 3: Schematic of the remote sensor system and its deployment configuration.
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3.2.1 Remote Sensing System

I deployed SmartCover sensors Figure 3(a) in the underground wastewater system of a university
campus. The network is modeled as a directed graph G = (V,E), where V denotes manholes
(nodes) and E represents pipes (edges) for downstream message passing (Figure 2). This structure
enables propagation of anomaly impacts, e.g., from an upstream leak to downstream nodes.

Sensors are affixed to manhole interiors, as shown in Figure 3(c), avoiding pipeline entry and
minimizing installation risks. To optimize costs, each sensor measures only flow velocity and
water depth, as shown in Figure 3(b). Data are transmitted in real time via antenna, as shown
in Figure 3(d), eliminating manual retrieval. The devices are battery powered with a two-year
lifespan, supporting sustained monitoring without frequent maintenance.

3.2.2 RWW Dataset: Collection and Characterization

I collect Real World Water (RWW) data from a wastewater network with 22 vitrified clay pipes
and 23 nodes (22 manholes plus 1 outlet, with invert elevations -1.69 to 0.56 m; Figure 2). Smart-
Cover sensors were deployed at 5 selected manholes, recording water depth and flow rate at 10-
minute intervals from October 1, 2023, to January 31, 2024, as shown in Figure 4(a). A calibrated
PCSWMM hydraulic model provided data for the remaining 18 nodes at the same temporal res-
olution, demonstrating effective sparse sensing augmented by simulation. Node features include
time-series data (17,706 steps) of water depth and flow rate; edge features include static attributes
as shown in Table 3.

Table 3: Node (time-series) and edge (static) features in the RWW dataset.

Node Water depth, Flow rate

Edge
Length, Roughness, Diameter (Geom1), Slope, GIS
Length, Max Flow, Max Velocity, Max / Full Flow,
Max / Full Depth

This data monitors hydraulic behavior, capturing daily and seasonal variations in hydraulic
flow, as illustrated in the sewer pipe hydraulics schematic in Figure 3(b) . Site-collected features
include pipe length, diameter, and slopes. The dataset shows consistent oscillatory patterns from
short- and long-term flow variations, influenced by operational schedules, diurnal cycles, or exter-
nal factors (e.g., rainfall). Leveraging this data refines predictive models for anomaly detection,
peak load forecasting, and water infrastructure management optimization.

I used the autocorrelation function (ACF) to analyze water depth and flow rate across nodes,
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observing stability and temporal evolution, as shown in Figure 4(c) for node 92090090 in Fig-
ure 2(a). Most nodes show high short-term autocorrelation (first 100-200 hours), indicating initial
oscillations from environmental or random factors, followed by cyclical variations after 2-3 days,
signaling periodicity. Flow rate data exhibits similar trends with slightly more early variability than
water depth. The edge features correlation heatmap in Figure 4(d) reveals significant relationships,
including strong negative correlations (-0.95 between slope and diameter (Geom1); -0.72 between
max flow and slope) and positive correlation (0.83 between max flow and velocity), highlighting
diverse hydraulic behaviors. Figure 4(b) shows average daily flow patterns by day of the week, with
daytime peaks from increased activity, early-morning troughs, and fluctuations reflecting varying
consumption habits influenced by operational or community activities.

3.3 Evaluation

I evaluate the predictive modeling capability of my AI-powered sensor network system using the
Real World Water (RWW) dataset. Both advanced baseline models and my proposed HydroNet
were trained and tested for comparison. The dataset was split into training, validation, and test-
ing sets in a 7:1:2 ratio, with a lookback window of 12 time steps to forecast the subsequent
12 steps. All experiments were conducted on a high-performance server equipped with NVIDIA

Figure 4: Analysis of the RWW dataset features: (a) Time-series visualization of aggregated flow rate
across the network, highlighting periodic variations; (b) Average daily flow patterns by day of the week; (c)
Example autocorrelation functions for depth and inflow at node 92090090, highlighted in Figure 2(a); (d)
Correlation matrix of edge features
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A6000 GPUs (48 GB VRAM). Early stopping based on validation loss was applied to ensure
fair comparison. Table 4 reports the forecasting performance for water depth and flow rate. Hy-
droNet consistently outperforms baselines across all metrics, demonstrating the effectiveness of
edge-attribute-aware message passing in capturing spatiotemporal hydraulic dynamics.

Table 4: Performance on the RWW dataset.

Depth(ft) Flow(cfs)

Method MAE RMSE MAPE MAE RMSE MAPE

CaST (Xia et al., 2024) 0.0186 0.0298 0.0747 0.0077 0.0138 0.0358
GMAN (Zheng et al., 2020) 0.0186 0.0140 0.0130 0.0168 0.0181 0.1255
ST-SSL (Ji et al., 2023) 0.0196 0.0230 0.0273 0.0150 0.0322 0.1313
STG-MAMBA (Li et al., 2024) 0.0176 0.0296 0.0120 0.0098 0.0166 0.1373
STGCN (Yu et al., 2018b) 0.0123 0.0324 0.0657 0.0066 0.0158 0.0709

HydroNet 0.0085 0.0178 0.0454 0.0038 0.0094 0.0408

3.4 Conclusion

I introduced an AI-powered monitoring framework for urban underground wastewater pipelines
that combines sparse sensing with hydraulic simulations for cost-effective data collection. The
collected measurements are modeled by HydroNet, an edge-aware spatiotemporal graph neural
network that incorporates pipeline attributes to improve predictive accuracy. Experiments on a real-
world campus network show that the framework achieves highly precise flow and depth forecasts,
providing strong predictive utility. These forecasts provide a robust foundation for downstream
tasks such as anomaly detection, offering a scalable, data-driven solution to enhance urban water
infrastructure security.

3.5 Future Work - AquaSentine

Existing approaches face a fundamental trade-off: dense sensor deployments provide compre-
hensive coverage but incur prohibitive costs, while sparse deployments reduce costs but sacrifice
detection capability. Traditional methods assume that effective monitoring requires sensors at most
or all network nodes. This assumption makes retrofitting legacy infrastructure economically infea-
sible, as installation costs scale linearly with coverage. To address this, I plan to build an integrated
AI system that automates monitoring, prediction, leak detection, and reporting—combining real-
time ST Graph forecasting with large language models for interpretable reporting.
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4 Trustworthy and Secure AI: Domain-Specific Model Innova-
tions

4.1 Introduction

Wastewater infrastructures are a fundamental part of the modern city, but defects in the aging sani-
tary sewer system (e.g., cracked pipes and damaged manholes) allow large volumes of precipitation
and groundwater to flow into the sewer system, known as the infiltration and inflow (I/I) problem.
This can lead to sewer overflows and have serious consequences for public health and the environ-
ment. The management of infiltration and inflow requires a large amount of time and expensive
costs of sensors, maintenance, operation, and engineering. There is a lack of efficient and cost-
effective methods for modeling hydraulic systems. The nature of an urban wastewater system,
characterized by its temporal, spatial, and topological properties, can be represented as a graph
with junctions represented as nodes and conduits as edges. Graph Neural Networks (GNN) are
particularly well-suited for modeling graph relations with node embeddings preserving node fea-
tures and edges carrying flow messages pass to each node. Mapping the urban wastewater system
into a spatial-temporal deep model enables temporal water depth predictions, which can help with
infiltration and inflow anomaly detection by comparing the predictive and sensor values. To better
customize a hydraulic model, I propose a HydroNet that captures spatio-temporal dependencies
considering the static junction features.

4.2 An Urban Wastewater System Graph

An urban wastewater system can be naturally described as a graph; nodes will describe junctions,
manholes, lift stations, outfalls, and storage facilities, and edges can be various conduits, including
gravity-driven mains, force mains, and trunk mains. %Unlike the conventional graph model, the
water system graph has the following characteristics: (1) directed message passing rather than
two-way message passing, (2) the degree of the vertex (e.g., the number of neighbors) is smaller,
and each node typically has less than three inflows, (3) the graph is dynamic as the upstream
flow may change over time. The node features of a water system are also different. I use the
physical characteristics of junctions as node features, including their elevations. Given the context
above, I formally design the wastewater system as G = (V,E), which is an urban water system
graph, V = {v1, ..., vN} is a set of vertices representing junctions, E is a set of edges representing
conduits. The adjacency matrix derived from G is denoted as A ∈ RN×N where N is the number
of nodes (junctions). If vi, vj ∈ V and (vi, vj) ∈ E, then Aij is one otherwise zero. Figure 2(b)
shows the conceptual design of an urban water system.
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Figure 5: HydroNet Structure

Training Data Generation The training data are generated using PCSWMM, an advanced version
of the Storm Water Management Model 5 (SWMM5) developed by USEPA. The targeted system
is a university campus sanitary sewer network, serving a 0.65 km2 sewershed. It consists of 22
vitrified clay pipes (diameters 0.2-0.25 m) and 22 manholes (invert elevations -1.69 to 0.56 m).
Sewershed data are derived from 15-cm aerial imagery and 1-m LiDAR digital elevation model.
Inflow data is based on long-term observations from residential and commercial areas. The model
solves the St. Venant flow equations to determine flow depths at 10-min intervals over a 72-hmy
period.

4.3 Methodology - HydroNet

At each time step t, the graph G has a dynamic feature matrix X(t) ∈ RN×D and static junction
feature matrix S ∈ RN×D′ . In my setting, the dynamic feature matrix represents the water depth at
time step t with D = 1, and the static feature matrix represents 12 junction features (D′ = 12) such
as invert elevation, rim elevation, freeboard, etc. The junction features influence the time-series
water depth at each junction.

In this paper, I evaluate my dataset on the time series prediction task. Given a water system
graph G and past T steps’ water flow as feature matrices X(t−T :t), the prediction task is to learn a
function f that predicts the next T ′ steps’ water flow. The mapping can be defined as

X(t+1:t+T ′) = f(X(t−T :t); S, G) (1)

Where X(t−T :t) ∈ RN×D×T and X(t+1:t+T ′) ∈ RN×D×T ′ .
To address this prediction task, I propose the HydroNet model. As shown in Figure 5, Hy-

droNet consists of stacked spatio-temporal layers taking both static and dynamic features. Un-
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like previous models, HydroNet is customized for hydraulic problems, incorporating both static
junction features and dynamic time series data. HydroNet integrates temporal convolutions for
time-dependent patterns and a Graph Convolutional Network (GCN) for spatial relationships. This
architecture captures both the temporal nature of water flow and the spatial structure of the sewer
network. The training objective is to minimize the mean absolute error (MAE):

L(X̂
(t+1:t+T ′)

; Θ) =
1

T ′ ∗N

T ′∑
i=1

N∑
j=1

|X̂(t+i)

j − X(t+i)
j | (2)

where X̂
(t+i)

j and X(t+i)
j are the predicted and actual water depths for junction j at time t + i,

respectively.

4.4 Preliminary Results

I split all datasets with ratio 7 : 1 : 2 into training sets, validation sets and test sets. I use historical
data to predict future data. The Lookback length, set at 12, involves using data from the preceding
12 time steps to forecast the next 12 time steps. In parallel, the prediction sequence length, marked
as y, is equally set to 12. This establishes the temporal scope for the output of my predictive model.

I compare HydroNet with the following models: (1) CNN: Convolutional Neural Network. (2)
RNN: Recurrent Neural Network. (3) GRU: Gated Recurrent Unit. (4) LSTM: Long Short-Term
Memory. (5) Transformer. (6) STGCN: Spatio-temporal graph convolutional networks Yu et al.
(2017). (7) ST-SSL: Spatio-Temporal Self-Supervised Learning Ji et al. (2023). The comparison is
based on the following metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
and Mean Absolute Percentage Error (MAPE).

The results (shown in Figure 6) emphasize HydroNet’s superior predictive capabilities for
sewer water levels. Consistently outperforming other models, HydroNet proves effective in com-
plex time series forecasting.

4.5 Conclusion

My experiments demonstrate that HydroNet, specifically developed for urban wastewater, sur-
passes traditional models in my dataset. HydroNet’s success validates the use of complex models
for precise predictions, which is essential for urban planning. This improved accuracy could sig-
nificantly enhance wastewater system management and reduce overflow risks.
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Figure 6: Performance comparison of different methods

4.6 Future Work - Message Passing Neural Network for Spatial-temporal
analysis

To achieve accurate prediction and assist automated wastewater system management, I plan to
introduce message passing neural network for spatial-temporal prediction.
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5 Deploying AI to Real-World Systems: Scalable Frameworks
and Unlearning

5.1 Introduction

Recent advanced spatio-temporal graph models effectively capture complex dynamic processes,
such as urban traffic flows, molecular interactions, and healthcare monitoring, by harnessing both
spatial adjacency and temporal continuity. However, the broad deployment of these powerful mod-
els increasingly faces stringent privacy regulations, such as the General Data Protection Regulation
(GDPR)European Union (2016) and the California Consumer Privacy Act (CCPA)California State
Legislature (2018), which necessitate the complete removal or unlearning of sensitive user data
upon request. As a result, ensuring compliance with these privacy requirements often requires re-
training the entire spatio-temporal graph model to preserve privacy for individual nodes, a process
that, while essential, introduces additional computational demands.

Motivating scenario. Taking a mobile–location service (e.g., Google Maps) as an example, Fig-
ure 7(a) shows smartphones (nodes) forming a richly coupled spatio-temporal graph stream of
time-stamped GPS signals. Suppose a subset of users revokes consent for their location data, ne-
cessitating the deletion of these devices and all incident edges, as shown in Figure 7(b). Simply
dropping the raw records (Figure 7(c)) does not fully satisfy the deletion requirement, as it fails to
eliminate the latent influence of the revoked users. Conversely, retraining the entire model from
scratch after purging those records (Figure 7(d)) erases the influence but fragments long-range spa-
tial and temporal paths, severely degrading accuracy and interpretability for the remaining users,
with a prohibitively high retraining cost.

In such scenarios, it is desirable to have an unlearning method capable of undoing the impact
of individual graph nodes both spatially and temporally. However, existing unlearning pipelines
fail when applied to spatio-temporal (ST) graphs. In static graphs, removing a vertex typically
only perturbs a small neighborhood, meaning partition-retrain or lightweight fine-tuning is often
sufficient. In contrast, ST graphs are fundamentally different: messages propagate across both
space and time, meaning a single node can influence the entire history of the graph. This presents
a key challenge: achieving 100% unlearning requires computation nearly equivalent to retraining
the model from scratch. Classic data-sharding methods, while useful, risk severing critical spatial
or temporal connections, thereby damaging the global spatio-temporal dependencies. Additionally,
some methods aim to reduce node influence, yet fail to meet the requirement of 100% unlearning.
Consequently, the problem remains unsolved.
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Figure 7: Unlearning on a spatio-temporal graph. (a) A fully connected ST-Graph yields high accuracy;
node size encodes impact, color encodes evolving features, and arrows denote spatio-temporal edges. (b)
Red marks indicate users who revoke data-use consent; their nodes and incident edges must be erased. (c)
Deleting raw records satisfies compliance yet leaves residual influence (faded arrows) inside the model.
(d) Retraining after deletion purges influence but fragments the graph and distorts remaining node features
(v1, v2, v3), harming accuracy.

5.2 Proposed Method - IsleNet

I propose IsleNet, a theoretically principled framework for efficient unlearning in spatiotempo-
ral graph neural networks (GNNs). IsleNet addresses the challenge of removing specific nodes
and edges from a trained model while preserving predictive performance with minimal compu-
tational cost. By partitioning the graph into isolated subgraphs (“islands”) and integrating them
via a hierarchical bridge mechanism, IsleNet enables localized unlearning, achieving near-optimal
performance retention. my approach employs spectral clustering for graph partitioning, PageR-
ank for key node selection, and a two-stage training protocol to ensure island independence and
global coherence, all rigorously aligned with the implementation. I formalize the method with
precise mathematical definitions, provide detailed theoretical analysis, and ensure computational
efficiency, making IsleNet suitable for large-scale spatiotemporal graphs.

5.2.1 Problem Formulation

Consider a spatiotemporal graph G = (V , E ,X), where V is a set of N nodes, E encodes edges
in a binary adjacency matrix A ∈ {0, 1}N×N , and X ∈ RT×N×F contains temporal features of
length T with F -dimensional features per node. A GNN model fθ : (X,A) 7→ Y predicts future
node states Y ∈ RN×H over a horizon H . The unlearning task is to remove a subset of nodes
UN ⊂ V and their edges UE = {(u, v) ∈ E : u ∈ UN or v ∈ UN}, producing a new model
fθ′ that approximates the performance of a model retrained from scratch on the remaining graph
G ′ = (V \ UN , E \ UE,X

′).
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a. Full ST-Graph                                   b. Island Network

Figure 8: Transform the large spatiotemporal graph into IsleNet. IsleNet is inspired by the fragmentation
of a continent into many independent islands, where people build bridges to reconnect isolated islands
and restore transportation similar to the original connectivity. I view the large spatiotemporal graph as a
continent that can be deliberately partitioned into multiple smaller spatiotemporal subgraphs, which are
then reconnected through bridge connections. Nodes requiring unlearning are confined to specific islands
and updated independently.
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Figure 9: Framework of IsleNet: Island Network for Unlearning Spatiotemporal Graphs. The frame-
work operates in three phases: (1) Graph Initialization Phase, where the input spatio-temporal graph
G = (V, E ,X) is prepared; (2) Training Phase, which includes Spectral Graph Partitioning (Eq. 4) to
decompose G into balanced islands {G1, . . . ,GM}, followed by independent Island Encoder Training (Eq.
17) to optimize local encoders {fθi}. This is succeeded by Bridge Connection Construction, comprising
Key Node Selection using PageRank (Eq. 7-9) to identify {Ki}, Intra-Island Bridge Construction (Eq. 10-
12), Inter-Island Super Bridge Construction (Eq. 13-15), and Bridge Optimization (Eq. 18) to integrate
global information via B; (3) Unlearning Phase, which involves Affected Island Identification (Eq. 19) to
determine Saffected, Bridge Update (Eq. 20) to revise Bnew, Affected Island Retraining (Eq. 21) to update
affected {fθi}, and Bridge Re-Optimization (Eq. 18) to finalize the unlearned model. This process enables
100% unlearning with 90-95% of full-graph performance. Subfigures illustrate: (a) The original spatio-
temporal graph, vulnerable to unlearn node retraining risks; (b) IsleNet transforms the graph into islands,
trains them independently, freezes weights, and constructs bridges between islands; (c) With bridges built,
IsleNet operates near original graph accuracy, identifying target nodes for unlearning; (d) Island 3 is rebuilt
to forget the target node, followed by bridge reconstruction to completely erase its influence.
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Formally, given a loss function L (e.g., L1 loss), the unlearning objective is:

θ′ ≈ argmin
θ

E(X′,Y′)L(fθ(X′,A′),Y′), (3)

where A′ is the adjacency matrix of G ′, and X′,Y′ exclude data associated with UN . IsleNet
achieves this by localizing retraining to affected subgraphs while maintaining global connectivity
through bridges, ensuring both efficiency and performance preservation.

5.2.2 IsleNet Architecture

IsleNet decomposes the graph into M independent subgraphs and integrates them via a bridge
mechanism to balance local isolation and global information flow. The architecture comprises
three components: spectral graph partitioning, island-independent spatiotemporal encoding, and
hierarchical bridge connections.

Spectral Graph Partitioning I partition G into M disjoint subgraphs {G1, . . . ,GM}, where Gi =

(Vi, Ei,Xi), Vi ∩ Vj = ∅ for i ̸= j, and
⋃

i Vi = V . Spectral clustering minimizes inter-partition
connectivity:

min
P

M∑
i=1

∑
u∈Vi,v /∈Vi

Auv s.t. |Vi| ≈
N

M
, (4)

where P = {V1, . . . ,VM} is the partition. The graph Laplacian L = D − A, with degree
matrix Dii =

∑
j Aij , has eigenvalues λ1 ≤ · · · ≤ λN . The M smallest non-zero eigenvectors

{v1, . . . ,vM} form a matrix V ∈ RN×M , whose rows are clustered to assign nodes to islands.
This minimizes the normalized cut, reducing cross-island dependencies and facilitating localized
unlearning. The O(N3) eigendecomposition is performed offline, leveraging sparse matrix tech-
niques to enhance scalability for large graphs. If clustering fails, nodes are assigned sequentially
to M groups.

Island-Independent Spatiotemporal Encoding Each island Gi is processed by a dedicated en-
coder fθi (e.g., STGCN), taking features Xi ∈ RB×T×|Vi|×F and edge index Ei ⊆ Ei, producing
embeddings Hi ∈ RB×|Vi|×H :

Hi = fθi(Xi,Ei). (5)

The encoder applies graph convolutions for spatial modeling and recurrent units for temporal
modeling, outputting per-node predictions. Independence is ensured by gradient isolation:
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∂Li

∂θj
= 0 ∀i ̸= j, (6)

where Li is the loss on island i. This isolation, achieved by separate optimization of each
encoder, confines unlearning to affected islands, preventing gradient propagation to unaffected
regions and enhancing efficiency.

Hierarchical Bridge Connection Mechanism To restore global connectivity lost during parti-
tioning, I introduce a hierarchical bridge mechanism comprising intra-island and inter-island (su-
per) bridges, which aggregate information via attention-based embeddings.

Key Node Identification. For each island Gi, key nodes Ki are selected using PageRank central-
ity, computing the stationary distribution of a random walk:

p = (1− α)AiD
−1
i p+

α

|Vi|
1, (7)

where p ∈ R|Vi| is the centrality vector, Di is the degree matrix, and α ∈ (0, 1) is the damping
factor. This is solved iteratively via the power method:

p(t+1) = (1− α)AiD
−1
i p(t) +

α

|Vi|
1, (8)

converging in O(|Ei| log |Vi|) iterations for sparse graphs. The top ki = max(2, ⌈0.1 · |Vi|⌉)
nodes are selected:

Ki = TopK(p, ki). (9)

PageRank ensures bridges connect structurally influential nodes, maximizing information flow.

Intra-Island Bridges. For island Gi, a bridge bintra
i aggregates embeddings of the top-2 key nodes

Ki[: 2]. Let HKi[:2] ∈ RB×2×D, where D is the embedding dimension. The attention mechanism
computes:

S =
HKi[:2]H

⊤
Ki[:2]√

D
∈ RB×2×2, (10)

W = softmax(S/
√
D, dim = 2) ∈ RB×2×2, (11)

hintra
bi

= MLPintra(flatten(WHKi[:2])), (12)
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where softmax(·, dim = 2) normalizes across the target node dimension, MLPintra : R2D →
RDb is a two-layer MLP with ReLU activation, and Db is the bridge dimension. The attention
weights W form a soft adjacency matrix, prioritizing nodes with similar embeddings.

Inter-Island Super Bridges. For each pair (Gi,Gj), a super bridge bsuper
ij connects up to three key

nodes per island, with Hij = [HKi[:3];HKj [:3]] ∈ RB×6×D. The attention and bridge feature are:

S =
HijH

⊤
ij√

D
∈ RB×6×6, (13)

W = softmax(S/
√
D, dim = 2) ∈ RB×6×6, (14)

hsuper
bij

= MLPsuper(flatten(WHij)), (15)

where MLPsuper : R6D → RDb . The total number of bridges is M +
(
M
2

)
, forming a sparse

connectivity structure.

Bridge-Enhanced Embeddings. Bridge features are aggregated residually:

Henhanced = H+ α
∑
b∈B

PbProj(hb), (16)

where H = [H1; . . . ;HM ] ∈ RB×N×D concatenates island embeddings, Proj : RDb → RD

is a linear layer, α > 0 is a scaling factor tuned on a validation set to balance local and global
contributions, and Pb ∈ {0, 1}N×1 maps bridge b to its connected nodes. This approximates A

with a low-rank structure, ensuring efficient global information flow.

5.2.3 Two-Stage Training Protocol

IsleNet employs a two-stage training protocol to ensure island independence and global integration.

Stage 1: Island-Independent Training Each encoder fθi minimizes:

Li =
1

B

B∑
b=1

∑
v∈Vi

∥yi,b,v − fθi(Xi,b,Ei)v∥1. (17)

Gradient isolation (Eq. 6) ensures local learning, critical for efficient unlearning.

Stage 2: Bridge Optimization Island encoders are frozen, and bridges minimize:
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Lbridge =
1

B

B∑
b=1

∑
v∈V

∥yb,v − IsleNet(Xb,E)v∥1 + λ
∑

w∈Wbridge

∥w∥22, (18)

where λ > 0 regularizes bridge parameters Wbridge. Freezing preserves island independence
while bridges learn global connectivity.

Efficient Unlearning Protocol Unlearning localizes retraining to affected islands. Given UN , I
identify:

Saffected = {i : Vi ∩ UN ̸= ∅}. (19)

Bridges connected to UN are removed:

Bnew = {b ∈ B : Kb ∩ UN = ∅}, (20)

and rebuilt using Eq. (10)-(15). For each i ∈ Saffected, retrain fθi on Vi \ UN :

θnew
i = argmin

θ
Li(θ,X

′
i,E

′
i,y

′
i). (21)

Encoders are frozen, and bridges are re-optimized using Eq. (18). Finally, encoders are un-
frozen to enable future fine-tuning, ensuring flexibility without compromising the unlearned state.

Algorithm 1 IsleNet Training and Unlearning

1: Input: Graph G = (V , E ,X), number of partitions M , forget nodes UN

2: Partition G into {G1, . . . ,GM} using spectral clustering (Eq. 4)
3: for each island Gi do
4: Train fθi to minimize Li (Eq. 17)
5: Compute Ki using PageRank (Eq. 7-9)
6: end for
7: Build bridges B using Eq. (10)-(15)
8: Freeze {fθi}, optimize B to minimize Lbridge (Eq. 18)
9: Identify Saffected using Eq. (19)

10: Update Bnew using Eq. (20)
11: for each i ∈ Saffected do
12: Retrain fθi on Vi \ UN using Eq. (21)
13: end for
14: Freeze {fθi}, re-optimize Bnew using Eq. (18)
15: Unfreeze {fθi}
16: Output: Unlearned IsleNet
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5.2.4 Theoretical Analysis

IsleNet provides several theoretical guarantees that underpin its effectiveness for spatiotemporal
unlearning.

Gradient Isolation. Equation (6) ensures zero gradient flow across islands, as each Li depends
only on θi. This confines unlearning to affected islands, preventing unintended updates to unaf-
fected subgraphs and enabling efficient retraining.

Low-Rank Connectivity. Bridges approximate A with O(M2) parameters. The attention matrix
W (Eq. 11, 14) is row-stochastic, with spectral norm:

∥W∥2 ≤ 1, (22)

ensuring stable information propagation. The bridge structure forms a sparse graph over key
nodes, reducing the effective adjacency matrix rank and maintaining global connectivity with min-
imal parameters.

Unlearning Convergence. For a fraction γ = |UN |/N , the unlearning loss is bounded:

Lunlearn ≤ Lorig +O

(
γ
∑

i∈Saffected

Li

)
. (23)

Since |Saffected| ≤ M , and retraining optimizes Li to convergence, the error increase is mini-
mal. The unfreeze step ensures adaptability for future training, leveraging pre-trained unaffected
encoders to maintain Lunlearn near Lorig.

Bridge Attention Stability. The attention mechanism’s softmax normalization ensures that W is
a convex combination of node embeddings, stabilizing the aggregation process. The scaling factor√
D in Eq. (10, 13) prevents vanishing or exploding gradients, enhancing training robustness.

Complexity Analysis IsleNet’s complexity is meticulously engineered to optimize efficiency
within its island-based framework, ensuring scalability for large-scale spatio-temporal graphs. The
partitioning phase involves computing the eigendecomposition of the Laplacian L, which demands
O(N3) due to the matrix operations required to extract the M smallest non-zero eigenvectors, a
process mitigated by offline execution with sparse matrix techniques to handle extensive node sets
effectively. The training phase is structured into two distinct stages: island training, which scales
as O(|E| ·T ·F ) across M islands by distributing the workload across approximately |E|/M edges
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per island in a parallelized manner, and bridge training, requiring O(M2 · D · B) to optimize the
M +

(
M
2

)
bridges through iterative parameter adjustments. The unlearning phase capitalizes on

localization, with a retraining complexity of O(|Saffected| · |E|
M

· T · F ) for affected islands and an
additional O(M2 ·D ·B) for bridge re-optimization, reflecting the selective update of only a subset
of components to minimize computational overhead compared to full retraining. Memory con-
sumption is efficiently managed at O(N · T ·F + |E|+M2 ·Db), storing node features, edge data,
and bridge parameters, a marked reduction from the O(N2) required for the full adjacency ma-
trix, thereby supporting IsleNet’s achievement of 90-95% of full-graph performance with scalable
unlearning capabilities.

5.3 Experiments

I assess IsleNet from three perspectives: 1) Accuracy parity: whether IsleNet matches the per-
formance of a full-graph model (Scratch) before any deletion; 2) Resilience after erasure: the
performance drop after unlearning a chosen subset of nodes and edges; 3) Component and effi-
ciency analysis: an ablation study that isolates each module’s contribution, along with timing and
memory profiling to measure speed and resource use on large graphs.

Experimental Setup Datasets: To evaluate the scalability of my method, I selected spatio-
temporal graph data spanning a range of sizes, with up to 3220 nodes. These datasets include:
RWW Guo and Wang (2024), a 23-node network representing water depth in a sewage system;
PeMS08 He (2025), a 170-node traffic flow network in California; Global Weather NOAA Physical
Sciences Laboratory (2025), a 1,000-node global daily temperature network; and Human Mobility
Flow Kang et al. (2020), a 3,220-node mobility network capturing daily population movement. The
datasets consist of time series ranging from 3,000 to 18,000 time steps, making them large-scale. I
split the data temporally into training (70%), validation (15%), and test (15%) sets.

Baselines and Models: I compare my approach against several state-of-the-art baselines:
Scratch (full graph training with no unlearning), SISA Bourtoule et al. (2021), STEPs Guo et al.
(2025a), GraphEraser Chen et al. (2022a), and GraphRevoker Zhang et al. (2025) on fmy spatio-
temporal graph models: STGCN, STSAGE, STGAT, and STGATv2. I fix the number of subgraphs
M to 4.

Metrics: I record evaluation metrics including MAE, MSE, RMSE, Trend F1, and R2. MAE
are reported in the Results section on the original scale, with mean and standard deviation. Run-
time, memory, and CPU costs are also measured.

Fair and Robust Setup: To ensure fair comparisons, model parameters are set to achieve an
R2 greater than 0.9 on RWW, PeMS08 and Human Mobility Flow (except for the Weather dataset,
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which has a R2 of 0.67 due to inherent predictability challenges). To avoid overfitting due to
smaller subgraph data sizes and reduced complexity, as well as noise from relative model capacity
variations, I adapt the number of hidden features in subgraphs based on the unlearning proportion.
This ensures that, without unlearning, the models reach the same R2 level as when using the full
graph. In practice, the proportion of unlearning required is often very small, typically involving
just one or a few nodes that must be unlearned and the entire graph retrained to maintain privacy
compliance, rather than accumulating many unlearning requests before performing an update. To
ensure the experiment is representative, I selected a large unlearning proportion of 10%, defining
the ”subset of nodes” as 10% of all nodes chosen randomly, with 5 fixed random seeds to ensure
reproducibility.

Implementation Details: I use the following hyperparameter settings across all experiments:
For island decomposition, α = 0.6 (spatial-temporal balance), β = 0.3 (temporal influence
weight), and λ = 0.1 (balance-cut trade-off). For bridge communication, ℓ = min(8, ⌈log2M⌉)
(neighbors per island), τ = 0.3 (correlation threshold), and γ = 0.1 (enhancement strength).
For information flow control, βIB = 0.01 (VIB trade-off), λ1 = 0.001 (transfer regularization),
and λ2 = 0.01 (bridge regularization). For structural unlearning, λretain = 1.5 (retention weight),
λsmooth = 0.1 (gradient stability), and τsem = 0.7 (semantic similarity). All experiments are con-
ducted using NVIDIA A100 GPUs with consistent computational settings to ensure fair compari-
son across methods.

5.4 Results

As shown in Table 5, at a 0% unlearning rate (indicating framework validation without unlearn-
ing), IsleNet consistently achieves performance closely matching Scratch-100% across various
datasets and models. For instance, on PeMS08 with STGCN, IsleNet yields an MAE of 30.532
± 0.045, only 6.2% higher than Scratch-100% (28.751 ± 0.117), achieving 94% of full-graph
performance. Similarly, on Weather, IsleNet’s MAE is 3.603 ± 0.016, nearly identical to Scratch
(3.597 ± 0.014). In contrast, baseline methods exhibit significant degradation. GraphEraser and
GraphRevoker, designed for recommender systems, perform poorly on spatio-temporal tasks, with
MAEs up to 208% worse than Scratch on PeMS08 (e.g., 88.685 ± 5.865 for GraphRevoker).
STEPs, using uniform partitioning and weighted averaging, only performs adequately on Weather
(5.449 ± 0.029 vs. 3.597 ± 0.014) but fails on PeMS08 and Mobility (e.g., 82.404 ± 9.043 on
PeMS08). SISA, relying on overlapping partitions, provides suboptimal accuracy (e.g., 34.271 ±
0.527 on PeMS08) but outperforms other baselines, though it remains inferior to IsleNet.

At a 10% unlearning rate (Table 6), simulating extensive concurrent unlearning requests, all
methods show increased MAE, but IsleNet maintains robust performance, often comparable to
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Table 5: Prediction Performance of Different Methods Before Unlearning (0% Unlearning).

Dataset Model Scratch-100% Baseline Methods IsleNet
SISA STEPs GraphEraser GraphRevoker

RWW

STGCN 0.020 ± 0.001 0.035 ± 0.007 0.082 ± 0.003 0.179 ± 0.060 0.177 ± 0.000 0.024 ± 0.001
ST-GAT 0.022 ± 0.002 0.035 ± 0.013 0.075 ± 0.004 0.179 ± 0.059 0.177 ± 0.001 0.025 ± 0.001

ST-GATV2 0.022 ± 0.002 0.036 ± 0.008 0.085 ± 0.008 0.179 ± 0.059 0.177 ± 0.001 0.024 ± 0.001
ST-SAGE 0.022 ± 0.003 0.036 ± 0.010 0.081 ± 0.008 0.179 ± 0.059 0.178 ± 0.000 0.025 ± 0.001

PEMS08

STGCN 28.751 ± 0.117 34.271 ± 0.527 82.404 ± 9.043 58.994 ± 1.663 88.685 ± 5.865 30.532 ± 0.045
ST-GAT 28.733 ± 0.095 34.404 ± 0.297 82.244 ± 7.516 58.248 ± 1.175 90.995 ± 4.683 30.573 ± 0.203

ST-GATV2 28.802 ± 0.023 34.601 ± 1.342 80.876 ± 10.800 57.938 ± 3.973 87.081 ± 7.951 30.634 ± 0.067
ST-SAGE 29.120 ± 0.178 34.133 ± 0.622 82.128 ± 8.982 64.277 ± 2.043 98.164 ± 0.878 30.394 ± 0.108

WEATHER

STGCN 3.597 ± 0.014 3.913 ± 0.008 5.449 ± 0.029 5.398 ± 0.214 5.870 ± 0.300 3.603 ± 0.016
ST-GAT 3.560 ± 0.035 3.902 ± 0.008 5.691 ± 0.089 4.938 ± 0.382 5.852 ± 0.398 3.654 ± 0.020

ST-GATV2 3.561 ± 0.021 3.918 ± 0.007 5.557 ± 0.048 4.865 ± 0.232 6.083 ± 0.618 3.631 ± 0.033
ST-SAGE 3.572 ± 0.011 3.928 ± 0.011 5.460 ± 0.071 5.874 ± 0.098 6.034 ± 0.148 3.607 ± 0.030

MOBILITY

STGCN 38 102 ± 500 48 183 ± 1 268 96 095 ± 13 820 65 172 ± 19 092 129 602 ± 20 108 41 466 ± 3 073
ST-GAT 36 938 ± 402 47 557 ± 1 330 95 649 ± 10 803 61 125 ± 11 715 139 513 ± 14 559 42 379 ± 4 209

ST-GATV2 37 346 ± 544 47 034 ± 1 148 100 220 ± 11 833 77 432 ± 18 665 136 966 ± 11 282 42 539 ± 3 492
ST-SAGE 39 068 ± 777 50 204 ± 1 451 86 902 ± 10 102 61 016 ± 9 939 125 962 ± 15 331 41 567 ± 4 511

or better than Scratch-90%. On PeMS08 with STGCN, IsleNet achieves an MAE of 31.564 ±
0.121, only 2.4% higher than Scratch-90% (30.810 ± 0.147), demonstrating minimal degradation.
Across other datasets, IsleNet’s MAE increases modestly, e.g., 8.7% on RWW (0.025 ± 0.002
vs. 0.023 ± 0.001) and 3.4% on Weather (3.703 ± 0.013 vs. 3.581 ± 0.020). Baseline methods,
however, suffer substantial accuracy losses. STEPs and GraphRevoker exhibit extreme degradation
on PeMS08 (99.807 ± 12.190 and 97.568 ± 3.789, respectively), while GraphEraser and SISA
perform better but remain inferior (e.g., 61.315 ± 4.643 and 34.332 ± 0.515).

To quantitatively assess the ability of unlearning methods to approximate the full-graph model
(Scratch) under both normal and unlearning conditions, I compute two types of similarity scores
between each method’s predictions and those of the corresponding Scratch models: (i) Bounded
Similarity, which penalizes large deviations beyond the full-graph baseline, and (ii) Ratio-based
Score, which captures the relative proximity regardless of direction.

As shown in Table 7, IsleNet consistently outperforms other unlearning methods, achieving
the highest bounded similarity (91.25%) and score-based similarity (92.18%) on average. This
indicates that IsleNet retains predictive behavior closest to the full-graph baseline both before and
after unlearning. In contrast, SISA achieves moderate proximity (71.11% bounded and 79.31%
score), while GraphEraser, GraphRevoker, and STEPs show significant degradation, with average
scores as low as 33.51%. These results reinforce IsleNet’s effectiveness in maintaining predictive
consistency while supporting structural unlearning.
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Table 6: Prediction Performance of Different Methods After Unlearning (10% Unlearning).

Dataset Model Scratch-90% Baseline Methods IsleNet
SISA STEPs GraphEraser GraphRevoker

RWW

STGCN 0.023 ± 0.001 0.036 ± 0.007 0.095 ± 0.022 0.188 ± 0.067 0.178 ± 0.006 0.025 ± 0.002
ST-GAT 0.023 ± 0.001 0.038 ± 0.006 0.097 ± 0.025 0.188 ± 0.080 0.178 ± 0.005 0.026 ± 0.003

ST-GATV2 0.024 ± 0.002 0.035 ± 0.003 0.090 ± 0.023 0.188 ± 0.081 0.177 ± 0.005 0.026 ± 0.002
ST-SAGE 0.023 ± 0.002 0.037 ± 0.011 0.092 ± 0.023 0.188 ± 0.085 0.178 ± 0.005 0.026 ± 0.003

PEMS08

STGCN 30.810 ± 0.147 34.332 ± 0.515 99.807 ± 12.190 61.315 ± 4.643 97.568 ± 3.789 31.564 ± 0.121
ST-GAT 30.145 ± 0.080 34.592 ± 0.594 92.950 ± 15.728 60.680 ± 3.484 91.816 ± 5.783 31.752 ± 0.220

ST-GATV2 30.054 ± 0.143 33.724 ± 0.271 91.348 ± 17.671 59.433 ± 1.374 91.973 ± 8.148 32.011 ± 0.135
ST-SAGE 30.304 ± 0.327 35.259 ± 0.517 94.038 ± 13.147 59.925 ± 1.202 96.225 ± 1.806 31.953 ± 0.198

WEATHER

STGCN 3.581 ± 0.020 3.956 ± 0.011 5.480 ± 0.061 5.816 ± 0.089 5.989 ± 0.380 3.703 ± 0.013
ST-GAT 3.590 ± 0.002 3.919 ± 0.009 5.475 ± 0.114 5.153 ± 0.491 5.944 ± 0.365 3.751 ± 0.062

ST-GATV2 3.569 ± 0.009 3.975 ± 0.010 5.766 ± 0.027 5.016 ± 0.632 5.545 ± 0.653 3.801 ± 0.034
ST-SAGE 3.584 ± 0.005 3.996 ± 0.020 5.520 ± 0.166 5.399 ± 0.264 6.312 ± 0.499 3.811 ± 0.054

MOBILITY

STGCN 38 602 ± 758 48 938 ± 1 039 100 059 ± 16 828 73 745 ± 17 019 131 529 ± 14 613 44 298 ± 5 420
ST-GAT 37 815 ± 806 47 807 ± 1 297 102 763 ± 13 037 65 775 ± 14 700 124 914 ± 15 670 44 383 ± 5 362

ST-GATV2 37 472 ± 741 49 129 ± 1 285 94 374 ± 12 208 76 865 ± 16 989 128 456 ± 18 644 45 944 ± 6 343
ST-SAGE 39 066 ± 596 50 254 ± 1 770 89 163 ± 10 121 60 593 ± 10 043 122 181 ± 15 292 43 920 ± 4 706

5.4.1 Ablation Study

I performed an ablation study on PeMS08 using STGCN to assess the impact of IsleNet’s key
components. Five variants were tested: full IsleNet, no bridge connections, single-stage training,
and global unlearning. Results are shown in Table 8.

Bridge Connections: Removing intra- and inter-island bridges increased MAE by 15.7% (0%
unlearning) and 26.2% (10%), highlighting the necessity of global context via attention-based key
node communication.

Two-Stage Training: Switching to joint training of islands and bridges raised MAE by over
25% in both settings and reduced unlearning efficiency, due to gradient interference between struc-
tural modules.

Localized Unlearning: Replacing local updates with full retraining increased MAE by 22%
and degraded unlearning throughput by 10×, confirming the efficiency of updating only affected
subgraphs and bridges.

Overall, IsleNet achieves an MAE of 31.564 under 10% unlearning—slightly worse than re-
training (30.810) but with far higher efficiency. This underscores the combined value of hierarchi-
cal bridging, staged optimization, and localized unlearning.

5.4.2 Efficiency and Capacity

IsleNet decomposes a monolithic ST-GNN into lightweight island-based sub-models with selective
bridge communication, enabling efficient training and unlearning. I evaluated its scalability on
PeMS08, comparing training and unlearning times for a monolithic model and IsleNet with M=4,
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Table 7: Similarity to Scratch models under 0 and 0.1 unlearning.

Metric Method Value

Bounded Sim 0%

SISA 69.64
STEPs 11.23

GraphEraser 19.84
GraphRevoker 8.29

IsleNet 91.91

Bounded Sim 10%

SISA 72.58
STEPs 11.18

GraphEraser 18.02
GraphRevoker 9.05

IsleNet 90.57

Bounded Avg

SISA 71.11
STEPs 11.21

GraphEraser 18.93
GraphRevoker 8.39

IsleNet 91.25

Score 0%

SISA 78.57
STEPs 41.64

GraphEraser 46.56
GraphRevoker 33.08

IsleNet 92.68

Score 10%

SISA 80.04
STEPs 40.29

GraphEraser 46.40
GraphRevoker 33.94

IsleNet 92.76

Score Avg

SISA 79.31
STEPs 40.96

GraphEraser 46.48
GraphRevoker 33.51

IsleNet 92.18

8, 16 islands. The monolithic ST-GNN required 600 seconds for training and 60 seconds for
unlearning 10% of nodes (17 nodes). IsleNet with M=4 reduced training to 360 seconds and
unlearning to 5 seconds, a 12× speedup, by retraining only affected islands (Eq. 19-21). With
M=8, per-island training dropped to 45 seconds, but total training rose to 360 seconds due to
more bridges (Eq. 14). Unlearning remained fast at 4.5 seconds. For M=16, training was 380
seconds, and unlearning further decreased to 4 seconds, as smaller islands ( 10 nodes) minimized
retraining costs. These results confirm IsleNet’s efficiency, especially for frequent unlearning, with
scalability validated by the ablation study (Section 5.4.1).
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Table 8: Ablation study on PeMS08 with STGCN

Configuration 0% Unl. MAE 10% Unl. MAE

Baselines
Full Graph (Scratch) 28.751 –
Retrained Graph
(90%)

– 30.810 1

IsleNet Variants
Full IsleNet 30.532 31.564
No Spectral Part. 45.635 49.938
No Bridge Conn. 35.322 39.840
No Two-Stage Tr. 38.261 39.551
No Localized Unl. 37.295 37.764

5.5 Conclusion

IsleNet’s superior performance is attributed to its hierarchical bridge communication, which pre-
serve inter-node influences and mitigate graph fragmentation.

With increasing emphasis on privacy compliance, achieving a 100% unlearning capability in
spatio-temporal graph models has progressively become a fundamental operational requirement.
Currently, most model trainers still rely on fully retraining their models when authorization to use
certain training data is withdrawn. In this study, I introduced IsleNet, a divide-and-conquer frame-
work explicitly designed for spatio-temporal graph unlearning, which achieves complete (100%)
target unlearning while maintaining accuracy close to the Original Full-Graph. IsleNet’s superior
performance is attributed to its hierarchical bridge communication, which preserve inter-node in-
fluences and mitigate graph fragmentation. IsleNet stands out as the first practically viable method
in this field, offering significant insights for unlearning tasks in real-time predictive models that
extensively utilize personal data, such as mobile device locations. Consequently, IsleNet holds
promise for establishing a new paradigm in privacy-compliant artificial intelligence modeling, con-
tributing to more sustainable and energy-efficient model training methodologies.

5.6 Future Work

In the future, I will improve the IsleNet.
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6 Conclusion

Currently, the three objectives serving our overall goal each show promising progress. For the first
objective, graph neural networks for real-world applications, the system deployed in a represen-
tative case study has successfully collected meaningful data that is learnable, regular, predictable,
and suitable for modeling. This data has demonstrated high accuracy across multiple existing
models, validating the reliability of our modeling and data collection approach and highlighting
the potential for broader applications.

Second, for trustworthy and secure AI, my HydroNet has exhibited the highest performance in
comparisons with baseline models, indicating the tremendous potential of specially designed graph
models optimized for domain-specific tasks, such as in the wastewater case study. This makes our
future work look very promising.

Finally, for deploying AI to real world, our IsleNet, developed for spatiotemporal graph un-
learning, has already shown good effectiveness and efficiency, despite a 5% accuracy loss, which
is still a remarkable achievement.

The above efforts align with my ultimate goal: to research and explore how graph learning
can build an automated AI system to achieve high precision, timeliness, scalability, low training
costs, automated unmanned operation, and automatic analysis of results with reporting for real-
world applications, exemplified by urban infrastructure monitoring. This will relieve humans from
dangerous, repetitive, and inefficient tasks, achieving the purpose of using AI to benefit human
interests and the environment. I will further advance this research. For Objective 1, I will also: 1.
Adopt more advanced architectures to enhance the AI system’s robustness and reliability. 2. Build
an automated system to enable automatic operation and detection. 3. Design an LLM-enhanced
terminal to read the automatically obtained result data, convert it from numerical results to text
reports, and automatically notify relevant teams. For Objective 2: I will design more advanced
spatiotemporal graph models specialized for domain tasks to improve performance on existing
data, such as MAE and other metrics. For Objective 3: I will design more advanced frameworks
to reduce accuracy loss.
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