<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Aptos;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
font-size:12.0pt;
font-family:"Aptos",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#467886;
text-decoration:underline;}
p.elementtoproof, li.elementtoproof, div.elementtoproof
{mso-style-name:elementtoproof;
margin:0in;
font-size:12.0pt;
font-family:"Aptos",sans-serif;}
span.EmailStyle19
{mso-style-type:personal-compose;
color:black;
font-weight:bold;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;
mso-ligatures:none;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#467886" vlink="#96607D" style="word-wrap:break-word">
<div class="WordSection1">
<p class="elementtoproof" align="center" style="text-align:center;background:white">
<b><span style="color:black">RESEARCH PROPOSAL SEMINAR NOTICE </span></b><o:p></o:p></p>
<p class="elementtoproof" align="center" style="text-align:center;background:white">
<b><span style="color:black">GEOSPATIAL COMPUTER SCIENCE PROGRAM </span></b><o:p></o:p></p>
<p class="elementtoproof" align="center" style="text-align:center;background:white">
<b><span style="color:black">COLLEGE OF SCIENCE AND ENGINEERING </span></b><o:p></o:p></p>
<p class="elementtoproof" align="center" style="text-align:center;background:white">
<b><span style="color:black">TEXAS A&M UNIVERSITY-CORPUS CHRISTI </span></b><o:p></o:p></p>
<p class="elementtoproof" align="center" style="text-align:center;background:white">
<b><span style="color:black"> </span></b><o:p></o:p></p>
<p class="elementtoproof" align="center" style="text-align:center;background:white">
<span style="color:black"> </span><o:p></o:p></p>
<p class="elementtoproof" align="center" style="text-align:center;background:white">
<span style="color:black"> </span><o:p></o:p></p>
<p class="elementtoproof" style="background:white"><b><span style="color:black">TITLE</span></b><span style="color:black">:
</span><span style="font-size:11.0pt;font-family:"Arial",sans-serif;color:black">UNCERTAINTY‑AWARE PROBABILISTIC FORECASTING OF NON‑COOPERATIVE DYNAMIC OBSTACLES FOR SAFE AUTONOMOUS AERIAL NAVIGATION</span><o:p></o:p></p>
<p class="elementtoproof" style="background:white"><b><span style="color:black">SPEAKER</span></b><span style="color:black">: Syed Izzat Ullah</span><o:p></o:p></p>
<p class="elementtoproof" style="background:white"><b><span style="color:black">ADVISOR</span></b><span style="color:black">: Dr. Jose Baca</span><o:p></o:p></p>
<p class="elementtoproof" style="background:white"><b><span style="color:black">COMMITTEE</span></b><span style="color:black">: Dr. Pablo Rangel, Dr. Tianxing Chu, Dr. Carlos Rubio-Medrano, and Dr. Susan Elwood</span><o:p></o:p></p>
<p class="elementtoproof" style="background:white"><b><span style="color:black">DATE</span></b><span style="color:black">: June 24, 2025 (Tuesday)</span><o:p></o:p></p>
<p class="elementtoproof" style="background:white"><b><span style="color:black">TIME</span></b><span style="color:black">: 1:00 PM Central Time (US and Canada)</span><o:p></o:p></p>
<p class="elementtoproof" style="background:white"><b><span style="color:black">PLACE</span></b><span style="color:black">: CI-126</span><o:p></o:p></p>
<p class="elementtoproof" style="background:white"><b><span style="color:black">Zoom Link:
</span></b><span style="color:black"> <a href="https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftamucc.zoom.us%2Fj%2F94329044811%3Fpwd%3Dcxydgh9kmqARmq8nPaA0kg7LFqev2j.1&data=05%7C02%7Ccosc-grad-students-list%40listserv.tamucc.edu%7Cfce8f7d624cd4273b10608ddaa9283cf%7C34cbfaf167a64781a9ca514eb2550b66%7C0%7C0%7C638854268432303388%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=YN3WI5UGYCCmdVV02Cm9PAAtYz6AgenknZOR5kqRfYk%3D&reserved=0" originalsrc="https://tamucc.zoom.us/j/94329044811?pwd=cxydgh9kmqARmq8nPaA0kg7LFqev2j.1">https://tamucc.zoom.us/j/94329044811?pwd=cxydgh9kmqARmq8nPaA0kg7LFqev2j.1</a></span><o:p></o:p></p>
<p class="elementtoproof" style="background:white"><b><span style="color:black">Meeting ID:</span></b><span style="color:black"> 943 2904 4811</span><o:p></o:p></p>
<p class="elementtoproof" style="background:white"><b><span style="color:black">Meeting Passcode:
</span></b><span style="color:black">566848</span><o:p></o:p></p>
<p class="elementtoproof" style="background:white"><span style="color:black"> </span><o:p></o:p></p>
<p class="elementtoproof" style="background:white"><span style="color:black"> </span><o:p></o:p></p>
<p class="elementtoproof" align="center" style="text-align:center;background:white">
<b><span style="color:black">Abstract</span></b><o:p></o:p></p>
<p class="elementtoproof" style="background:white"><span style="color:black"> </span><o:p></o:p></p>
<p class="elementtoproof" style="text-align:justify;background:white"><span style="color:black">Unmanned Aerial Vehicles (UAVs) are increasingly deployed in complex, dynamic environments for applications such as urban air mobility, surveillance, emergency response,
and package delivery. However, safe navigation in dynamic and uncertain environments featuring unpredictable obstacles and varying environmental conditions remains an unresolved challenge. Existing motion planning algorithms are constrained by significant
limitations that undermine their effectiveness in real-world scenarios. First, current methods often rely on linear or constant-velocity models for obstacle motion prediction, which fail to capture the complex, nonlinear, and context-dependent behaviors of
dynamic obstacles, leading to delayed or inadequate avoidance maneuvers and increased collision risks. Second, most trajectory planning frameworks lack modularity, treating obstacle prediction and planning as separate processes, which hinders proactive decision-making
and limits the integration of advanced prediction models. Third, there is a critical gap in balancing the adaptability of learning-based methods, which excel at modeling complex obstacle behaviors, with robust safety mechanisms that account for uncertainties
in perception (e.g., occlusions or noise in sensor readings) and environmental disturbances (e.g., wind gusts, turbulence, etc.), compromising reliability in safety-critical operations.</span><o:p></o:p></p>
<p class="MsoNormal" style="background:white"><span style="color:black"><o:p> </o:p></span></p>
<p class="MsoNormal" style="background:white"><span style="color:black">This research bridges these gaps through a unified probabilistic perception, data-driven forecasting, and verified trajectory optimization. First, we develop a real-time collision avoidance
module that enhances state-of-the-art trajectory planners through short-term dynamic obstacle prediction using an Obstacle Filter. This transforms reactive systems into anticipation-aware architectures. Second, we develop and integrate deep learning-based
prediction modules (e.g., Transformers, RNNs) to forecast multistep, probabilistic obstacle trajectories, enabling proactive avoidance of complex interactions. Third, we develop an uncertainty-aware module that incorporates perception uncertainties, and environmental
disturbances into robust trajectory planning, ensuring reliability in challenging conditions like urban air mobility or search-and-rescue missions. Extensive simulations and hardware benchmarks will validate the framework’s improvements in safety, efficiency,
and reliability. This research aims to bridge the critical gap in autonomous aerial systems, facilitating their reliable deployment in real-world applications where uncertainty is inherent.<o:p></o:p></span></p>
</div>
</body>
</html>