<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:#954F72;
text-decoration:underline;}
p
{mso-style-priority:99;
margin:0in;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman",serif;}
p.msonormal0, li.msonormal0, div.msonormal0
{mso-style-name:msonormal;
mso-style-priority:99;
margin:0in;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman",serif;}
span.EmailStyle19
{mso-style-type:personal;
font-family:"Calibri",sans-serif;
color:windowtext;}
span.EmailStyle20
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;
color:#1F497D;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72">
<div class="WordSection1">
<p><span style="font-family:"Calibri",sans-serif;color:black"><o:p> </o:p></span></p>
<p><span style="font-family:"Calibri",sans-serif;color:black">PRESENTER: Sai vinay teja Manikonda<o:p></o:p></span></p>
<p><span style="font-family:"Calibri",sans-serif;color:black">TITLE: OIL SPILL DETECTION IN SAR IMAGES USING META-HEURISTIC SEARCH ALGORITHMS<o:p></o:p></span></p>
<p><span style="font-family:"Calibri",sans-serif;color:black">DATE : 04/18/2018<o:p></o:p></span></p>
<p><span style="font-family:"Calibri",sans-serif;color:black">TIME: 11:00AM - 12:00<o:p></o:p></span></p>
<p><span style="font-family:"Calibri",sans-serif;color:black">LOCATION: CI 228<o:p></o:p></span></p>
<p class="MsoNormal"><u><span style="font-size:12.0pt;color:black"><o:p><span style="text-decoration:none"> </span></o:p></span></u></p>
<p class="MsoNormal"><u><span style="font-size:12.0pt;color:black">ABSTRACT</span></u><span style="font-size:12.0pt;color:black">:<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;color:black">In this research, two frameworks are introduced based on Meta-heuristic search algorithm to perform segmentation on Synthetic Aperture Radar (SAR) oil spill images, to detect the oil in the image
and calculate the amount of oil spilled in that region. <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;color:black">The first one, a multilevel thresholding(MT) based on the Meta-heuristic search algorithm. The proposed algorithm encodes random samples from a feasible search space inside the image histogram
as candidate solutions, whereas their quality is evaluated considering the objective functions that are employed by the OTSU methods. Guided by these objective values, the set of candidate solutions are evolved through the Meta-heuristic search algorithm operators
until an optimal solution is found. <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;color:black">The second is, Segmentation of SAR images using cluster-based Meta-heuristic search algorithm. In this method we improve k means clustering algorithm by using Meta-heuristic search algorithm. Choosing
good candidates for the initial centroid selection process for compact clustering algorithms, such as k-means, is essential for clustering quality and performance. Here a novel k means clustering algorithm using Meta-heuristic search algorithm is proposed.
This model uses meta-heuristic methods to identify the good candidates for initial centroid selection in k-means clustering method. <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;color:black">Three Meta-heuristic search algorithm algorithms like, Genetic algorithm, Simulated Annealing, and Particle Swarm Optimization will be used in the frameworks to compare the results.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</body>
</html>